
Code Afrique 2K19

Kumasi and Accra, Ghana
January 2019

Ice Breakers
Attention!!!!
Make sure you have registered outside

Introductions
Video Introductions

Introductions
Professors and Mentors

Sponsors & Partners

What is and Why
Pursue
Computer Science?

What is Computer Science?
CS = Problem solving using computers

•Machine Learning and Artificial Intelligence (AI)

•Data Science, Big Data

•Theory and Algorithms

•Programming Languages

•Scientific Computing

•Human Computer Interfacing

•Systems, Networking, and Databases

•Security

•Graphics

•Architecture

•Robotics

•Computational Biology

•Quantum Computing

•…

It’s not just programming!!

What is CS Used For?

● Laptops, Mobile Phones, etc.
● Word processing, spreadsheets, etc.
● Computer games, computer animation
● Self-driving cars and trucks, robots, …
● The “Web”
● Apps and “The Cloud”

○ Google, Facebook, WhatsApp, Instagram, …
○ Uber, Amazon, eBay, …

● Blockchains and Cryptocurrencies
● Smart home, smart farm, smart city, …
● Air Traffic Control, Power Grid, etc.
● Modern healthcare
● much much more

What are your favorite computer apps?

Careers in Computer Science

● Become a programmer
○ specialize in robots, computer games, or …

● Become a web designer
○ build nice websites

● Become a data analyst
○ collect data and figure out what it means

● Become a systems/network/database administrator
○ maintains systems, email, computer networks, etc.

● Become an entrepreneur
○ start a company (consulting, new tech, etc.)

● Become a professor
○ come up with new uses for computers, and teach students about CS

● ...

Summary

● There are many high paying CS jobs out there!!

● Almost every industry needs CS experts

● Working with all kinds of people on all kinds of problems

● International opportunities

BREAK

Find your teammates

Command line
Basics

Command Line Basics

Windows:
● cd ..
● dir

Linux:
● cd ..
● ls

Intro
To
Python

The Python Shell
Type python and hit enter

Spyder

Spyder

Spyder

Spyder

Print Statements

Print Statements

To output something in Python, we use

print statements.

In Python 3, we use the syntax:

● print(“Statement to be printed”)

E.g.: print(“Hello World!”)

With Spyder

Question on Print Statements

● Print your name

● Print your favourite food

Operators

Arithmetic Operators

#Calculating in Modulo
print (7 + 5)

>> 12

OPERATORS

#Calculating in Modulo
print (7 % 5)

>> 2

OPERATORS

Variables

Variables
A variable is a name that stores a value.

An assignment statement associates a variable name
on the left side of the equal sign with the value on
the right side.

Examples of variable assignment:

cat = 5;

dog = 82;

Variables and Assignments

#Assigning variables
population = 23456
population += 400 - 56

>> 23800

ASSIGNMENT OPERATORS

Data Types in Python

● int e.g. 1, -3, 5, -10

● float (decimal) e.g. 2.3,3.0,4.5,5.7 etc

● string e.g.: ’Cynoc’, ‘Sena’ , ’Samuel’, ‘Jesse’

● boolean: True or False

Boolean examples

3 == 3 evaluates to True

3 == 4 evaluates to False

3 != 3 evaluates to False

3 != 4 evaluates to True

True or False evaluates to True

True and False evaluates to False

not True evaluates to False

Working with
Strings

What really are strings?
● In computer science, a string is any finite sequence of

characters.

 i.e. letters, numerals, symbols, and punctuations marks

Strings are quoted characters:

1. “ab cd” (most languages use this)

So then How do you
represent quotes in quotes?
You can do this in 3 ways:

● You can escape the quotes using backslash (\):
○ print “\” A word that needs quotations marks\””

● Use single and double quotes together:
○ print ‘ “A word that needs quotation marks” ‘

● Use triple-quoted strings:
○ print “”” “A word that needs quotation marks” “””

Strings can be indexed
S=’abc d’

Access characters of string with the symbol [] and
strings are zeroed indexed:

S[0] is ‘a’, S[1] is ‘b’, and so on

Negative indexes are from the end:

S[-1] is ‘d’, S[-5] = ‘a’

Strings can be “sliced”
S=’abc d’

S[0:3] is ‘abc’

S[2:5] is ‘c d’

S[1:] is ‘bc d’

S[:2] is ‘ab’

Question
S=’Hello all’

What is S[3:6] ?

A=’llo’

B=’lo ‘

C=’o a’

D=’o ‘

E=Sorry bro, No idea

Question
S=’Hello all’. What is S[4:] ?

A=’Hell’

B=’o all’

C=’Hello’

D=Error!

E= Sorry bro, No idea

What about S[:4] ?

Other cool stuffs you can do
with strings!!!

You can check if a substring (part) of the string equals to another
string. This evaluates to a boolean (True or False).

Eg: s=’cadasdsaxasaadsda’

“ ‘cad’ in s” evaluates to True while “‘foo’ in s” evaluates to false

Cool method for strings
A cool function for string is “len” which returns the
number of chars in a String.

Eg. len(s)=17

len(s[3:8])=5 etc

Quick Question

len(s[3:8])==6 (True or False)

Other Cool Methods associated with Strings:

Use the dot syntax when calling a method unique to Strings.

Example: s= ‘Hello World’

s.index(‘e’)=1

s.count(‘l’)=3

s.upper() == ‘HELLO WORLD’

Resource for finding other cool methods on
strings=https://docs.python.org/3/library/stdtypes.html#str

https://docs.python.org/3/library/stdtypes.html#str

Had Enough of Strings? One more fact lol

Strings can be concatenated (meaning that you can add two or more
strings together to form one string)

Example:

Owass= ‘Cynoc, Jesse, ’

SOS= ‘Sena’

Labone= ‘Samuel’

message= ‘love to code and we love you all’

Ghana_hacks=Owass + Labone + ‘and’ + SOS + message

Lists

Introduction to Lists

What is a list?

● A mutable data structure used to order the sequence of elements.
● In Python, lists are denoted by [], and the values within are

separated by commas.
● Lists can be assigned to variables.

Examples of Lists

E.g.: x = [3, “Hello”, 9, True]

result = [4, 0, 3, 5, 3, 6]

● NB: Lists can contain any type at any position

String-Like Properties of Lists

● Lists are zero-indexed like strings.
● Elements in a list can be accessed using [].

Eg: x = [6, 2, 9, “People”]

x[0] = 6, x[3] = “People”, x[4] will give an error, x[-1] = “People”

● Lists can also be sliced. Slicing always creates a copy of the list.

Eg. If b = x[0:2] , then b is [6, 2] and x is unchanged.

Useful List Methods
list.append(x) - Adds x to the end of the list.

list.extend(iterable) - Extend the list by appending all
the items from the iterable. An iterable is any type
that can be looped over; a list is an example of such.

list.index(x) - Finds the position of x in the list, gives
error if x is not present.

More Useful List Methods
list.sort() - Sorts the list. Additional parameters can be
given to modify how the list is sorted.

list.insert(i, x) -Inserts item x at position i in the list.

More of these methods can be found in the Python
documentation at
https://docs.python.org/3/tutorial/datastructures.html

https://docs.python.org/3/tutorial/datastructures.html

Using external libraries
(Modules)

External libraries
● External libraries or modules contain functions that

we can use without having to re-implement those
functions.

● To use an external library in Python, we first have to
import that external library.

● We can then call functions from the external library.

Using the Math
Library

import math

print math.sqrt(9))

>> 3

MATH LIBRARY/MODULE

IF STATEMENTS

#create username and password
username = “Sam”
Password = “IamCool”

If name == “Sam”:
print “Sam is logging in”

If name != “Sam”:
print “A hacker is logging in”

IF STATEMENT

#create username and password
username = “Sam”
Password = “IamCool”

If name == “Sam”:
print “Sam is logging in”

else:
print “Password Incorrect”

IF-ELSE STATEMENT

#create username and password
username = “Sam”
Password = “IamCool”

if name == “Sam”:
print “Sam is logging in”

elif name == “John”:
print “John is logging in”

else:
print “Password Incorrect”

IF-ELIF- ELSE STATEMENT

Loops

Introduction to Loops
● Loops are mainly used to process

sequences/iterables such as strings and lists
● Sidenote: The range function

Python’s range() function generates an iterator
(not a list!) of numbers from 0 up to the number
exclusively, and is generally iterated over in
for-loops.

Loops continued
range(5) stores [0, 1, 2, 3, 4]

range(0, 6) stores [0, 1, 2, 3, 4, 5]

range(4, 9, 2) stores [4, 6, 8]

list(range(5)) = [0, 1, 2, 3, 4]

 You’ll see one practical application of this in a bit.

For-Loops

for x in iterable:

Do something

So if I want to print every value in my list a for example, I would write
something like:

for x in a:

print(x) This will print all the values in a

General structure of for-loop
Iterable is the loop sequence
x is the loop variable
Do something is the body

Another Way to Do For-Loops
for x in range(10):

print(x + 5) What would this do?

Practical way of using for-loops like this:

If I have some string, and I want to process each letter of the string, I could write

for y in range(len(string)):

Do something to string[y]

● Note: You choose which way to implement your for-loop depending on the
situation you need them for. Sometimes one method is easier than the other.

While-Loops
● We can only use a for-loop if we know the

number of times we want to do something.

● For-loops cannot handle cases where we want to
loop an unknown number of times.

● While-loops can handle these cases, however
while loops are trickier to use.

While Loop Syntax

while <condition>:

Do stuff

The loop stops when the
condition is false. However you
need to manage this explicitly
in your code, otherwise you
will create an infinite loop!

While-Loops
Eg.

n = 0

m = 7

while n<m:

print(“n is less than m”) Body

...

n=n+1 What happens if this last line isn’t there?

While-Loops

count = 0
while (count < 9):
 print('The count is:', count)
 count = count + 1

print "Good bye!"

While-Loops
The count is: 0
The count is: 1
The count is: 2
The count is: 3
The count is: 4
The count is: 5
The count is: 6
The count is: 7
The count is: 8
Good bye!

Note on indentation

 count = 0
 while (count < 9):
 print('The count is:', count)
 count = count + 1

 print "Good bye!"

correct indentation is very important!!

Note on indentation

 count = 0
 while (count < 9):
 print('The count is:', count)
 count = count + 1

 print "Good bye!"

this won’t work

Note on indentation

 count = 0
 while (count < 9):
 print('The count is:', count)
 count = count + 1

 print "Good bye!"

what does this do?

Note on indentation

 count = 0
 while (count < 9):
 print('The count is:', count)
 count = count + 1

 print "Good bye!"

this is the right way

Infinite Loops

var = 1
while var == 1 : # This constructs an
infinite loop
 num = input("Enter a number :")
 print("You entered: ", num)

print "Good bye!"

Infinite Loops
Enter a number :20
You entered: 20
Enter a number :29
You entered: 29
Enter a number :3
You entered: 3
Enter a number between :Traceback (most recent call
last):
 File "test.py", line 5, in <module>
 num = raw_input("Enter a number :")
KeyboardInterrupt

Infinite loop in Spyder

Interrupting an infinite loop in Spyder

click button or hit <control>C

Exercise

I have a list of words, and I want to combine all these words
into one big word as a string.

Can I use a for-loop? If so, how would I write the loop?

Can I use a while-loop? If so, how would I write the loop?

Functions

Structure of a Function

def example(parameter):

“”” Returns: the input as a string.

Parameter: var

Precondition: var is an int “””

x = str(var)

return x

Function header

Specification

Body

NB: Indentation is very important! Shows that these
statements belong to that function! Indentation is
needed in loops and if statements as well.

Example of a Function

def greet(name):

"""This function greets to

the person passed in as

parameter"""

print("Hello, " + name + ". Good morning!")

Specification

Functions Continued

● Functions do not always need return
statements.

● Functions that behave like this are called
procedures.

Functions Continued

Eg. A function like sort() modifies the given
list and does not actually return any value.

● The keyword pass can be used in your
code as a placeholder, especially if you
have not finished the function yet.

● NB: Make sure that whatever code you
are writing fulfills the specification!

Approaching Coding
Questions

A Three-Step Approach To Coding
Problems
1. Read the question. Understand what information you have

available to you and what the question wants you to do.
2. Try to write out an algorithm or solution to the problem in

“English” or “pseudocode”.
3. Translate your English solution to code

Example

Q: Write a function that takes in a number and tells you whether it is even or not.

Step 1: After reading the question, we see that we have one number as our only
input. We also see that our function should either return ‘even’ or ‘odd’ or
something equivalent to those outputs.

Since our function only has one input, our function header will look something like:

def isEven(num):

Example

Q: Write a function that takes in a number and tells you whether it is
even or not.

Step 2: Let’s try write out a solution in English:

Given input number ‘num’,

- If ‘num’ is divisible by 2, then say it is even
- Otherwise, say it is odd

Example

Step 3: We need to translate our English solution to code

If ‘num’ is divisible by 2, then say it is even

-> if num % 2 == 0:

return “even”

Otherwise, say it is odd

-> else:

return “odd”

Example

So now our complete function looks like:

def isEven(num):

if num % 2 == 0:

return “even”

else:

return “odd”

Practice/Lab Section

Quadratic Solver

Tic Tac Toe

Quadratic Solver Instructions

● Open the Questions folder on your computer
● Open the quadratic_solver folder
● Open the quadratic_solver.py file
● Read the instructions and do exactly what it says
● To test your code open the command

prompt/terminal and type
○ python tests.py

HACKATHON

DAY 2

ADVANCED
TOPICS

Panel Discussions

BINARY SEARCH

DEPTH FIRST SEARCH

OBJECT ORIENTED
PROGRAMMING

dollar_account = BankAccount(name = “Sam”, balance = “300”)
dollar_account.balance = dollar_account.balance + 500

SPARSE VECTORS
How would you represent something like this if you do
not have enough computer space?
[1,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,...]

SPARSE VECTORS
How would you represent something
like this if you do not have enough
computer space?

[1, 0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,0,0,...]

Can be represented as:

{0:1, 12:3}

HACKATHON
SESSION

Question 1

If we list all the natural numbers below 10 that
are multiples of 3 or 5, we get 3, 5, 6 and 9. The
sum of these multiples is 23.
Find the sum of all the multiples of 3 or 5 below
1000.

def sum_of_multiples_of_3_or_5(n):
#write your code here
pass

def sum_of_multiples_of_3_or_5(n):

 """If we list all the natural numbers below 10 that

 are multiples of 3 or 5, we get 3, 5, 6 and 9.

 The sum of these multiples is 23.

 Find the sum of all the multiples of 3 or 5 below 1000.

 """

 #initialize a variable to store the sum

 total= 0

 #Loop through the values of n from 1:n-1

 for i in range(1,n):

 #Check if i is divisible by 3 or 5

 #NB: the % is the modulus

 if i%3 == 0 or i%5 == 0:

 #Add the value to the acccumulator

 total += i

 #Return the sum

 return total

Question 2

Write a computer program to test if a number is
prime or not.
(Think about how you can make it faster)

def is_prime(n):
#write your code here
pass

def is_prime(n):
 """Write a computer program to test
if a number is prime or not."""

 #make sure all inputs are integers
 assert isinstance(n, int)

 #eliminate 0 and 1 and all negative
#numbers
 if n < 2:
 return False

 #if its a prime we will find a factor #
between 2 and the sqaure root
 for i in range(2, int(math.sqrt(n))+1):
 if n%i == 0:
 return False
 return True

Question 3

"Write a program that prints the integers between 1 and 100. But

for multiples of three print “Fizz” instead of the number and for

the multiples of five print “Buzz”. For numbers which are multiples of

both three and five print “FizzBuzz”."

def fizz_buzz(n):
#write your code here
pass

Question 4
Mr. X has a vast collection of electronic music
albums. Each album has an
assortment of different tracks, in no particular
order. Due to how large his music collection is, Mr.
X has not been able to listen to all of the songs in
his collection. He wants to be able to create a
program that looks at an album and returns a list of
the songs he has not listened to.
 Mr. X was able to create a helper function
‘check_plays’ that returns 1 if a song
has been played before and returns 0 otherwise. He
now needs to write the function ‘unplayed_songs’
that takes in the album as a list of songs, and
returns a list of the songs in that album that have
not been listened to before.
Write your implementation of ‘unplayed_songs’. You
can use the function ‘check_plays’ in your solution.

def unplayed_songs(album):

 # Write your code
here

pass

def check_plays(song):

You should assume
that this function
works as it should.

pass

def unplayed_songs(album):
 # Solution
 assert isinstance(album, list)
 for x in album:
 assert isinstance(x, str)
 result = []

 # Loop through list and append
#song to accumulator if check_plays
 # returns 0.

 for song in album:
 temp = check_plays(song)
 if temp == 0:
 result.append(song)

 return result

END OF SESSION

Thank You!

