
Intro
To
Python

Code Afrique Team

What is Python?

A language to tell a computer what to do

● Computers are stupid---they need to be
told EXACTLY what to do

● There are many programming languages

● Python is good for learning to program

Basic concept: Functions

● For example:

● 𝑓 𝑥 = 3𝑥 + 4

● 𝑔 𝑥 = 𝑥

● 𝑠𝑢𝑚 𝑥, 𝑦 = 𝑥 + 𝑦

We call 𝑥 an “input parameter

𝑠𝑢𝑚 takes two input parameters

Functions in Python

def f(x):

return 3 * x + 4

def square(x):

return x * x

Function “header”

“Body”

Another function header

Another body

Functions in Python

def f(x):

return 3 * x + 4

def square(x):

return x * x

Function “header”

“Body”

Another function header

Another body

𝑥 is the “input
parameter

Using Spyder
Step 1: Enter functions in this box

Using Spyder Step 2: Click on the green triangle (don’t forget)

Using Spyder

Output (and error messages)
appear in “console” box

Step 2: Click on the green triangle (don’t forget)

Using Spyder

Step 3: Type a function call here and hit
“enter”

Using Spyder

Result of function
printed here

Step 3: Type a function call here and hit
“enter”

Try the following (and take turns!):

● 𝑓(0)
● 𝑓(0.5)
● 𝑓(−3)
● 𝑠𝑞𝑢𝑎𝑟𝑒(−3)
● 𝑠𝑞𝑢𝑎𝑟𝑒(123456789)
● 𝑠𝑞𝑢𝑎𝑟𝑒(𝑓(0))

Now define functions yourself
1. Write the following function in Python :

𝑔 𝑥 = 𝑥= + 2𝑥 + 3

2. Evaluate :

○ 𝑔(0)

○ 𝑔(1)

○ 𝑔(−0.5) dot dot dot
Write your code here

More time for you to play

1. Write a function 𝑎𝑑𝑑 𝑥, 𝑦, 𝑧 that returns the sum of its
three inputs (that is, 𝑥 + 𝑦 + 𝑧)

2. Evaluate the following:

○ 𝑎𝑑𝑑(1, 2, 3)

○ 𝑎𝑑𝑑(1, 1, −2)

Errors and Bugs….

● Remember: computers are stupid

● Everything needs to be EXACTLY right

Indentation error

Everything in a function
MUST BE indented

Indentation error
Hover mouse over triangle for

information about the error

Syntax error

Missing :

Undefined name warning

Should be ‘x’, not ‘y’

Remember: Keep hitting that green triangle

You need to do that each time you change or fix your code!

Tip: “commenting out functions”

● If you want to save a function you are working on but it does not
quite work yet, you can temporarily “comment it out”.

● To do this, place three quotes before and after the function at

the beginning of the line

What have we learned so far?

● You can define functions in Python
● In Spyder, you enter functions in the “left box”

● You can try out functions in the ”right box”

● You need to deal with errors to get things to work
● You can comment out functions temporarily

“Strings”

Strings are fun!

● Examples of strings: “hello” “I love Code Afrique” “fdalepru”
● A string is enclosed in quotation marks (“)

● You can glue together two strings using +

“hello, ” + “Jon” is “hello, Jon”
“abcd” + “efgh” is “abcdefgj”
“efgh” + “abcd” is “efghabcd”

Functions with strings

Write a function greet(x) that returns the string “hello, x”

Now you try it (remember, take turns)

Write a function loves(x, y) that returns a string “x loves y”

Be sure to test it here
with different examples

(and take turns!)
dot dot dot

Write your code here

String indexing

● A position in a string is called an index
● Indexes start counting at 0

Shoshana
01234567

The index of ‘o’ is 2

String indexing

● Write a function firstTwoLetters(str)that returns
the first two letters in the input string str

● str[x] evaluates to the letter at index x

String indexing

● Write a function firstTwoLetters(str)that returns
the first two letters in the input string str

● str[x] evaluates to the letter at index x
Do not confuse:
• f(x) - call function f with

input parameter x
• s[x] - get the letter at index x

from string s

Quiz

If a string has 10 letters, what is the index of the last letter?

A) 9
B) 10
C) 11

Length of a string

Built-in function len(str) returns the length of string str

Examples:
len(“hello”) is 5
len(“Lesley Greene”) is 13
len(“”) is 0

Function using len(str)

● Write a function lastLetter(str)that
returns the last letter in the input string str

What is your Code Afrique nickname?

Write a function nickname(first, last)that consists of the first three
letters of your given name (first name) followed by the last three letters of

your surname (last name) , followed by “ca” (for Code Afrique)

For example: nickname(“Hakim”, “Weatherspoon”) is “Hakoonca”

What have we learned about strings?

● A string is a list of letters, enclosed by quotes
● We can glue two strings together with +

● We can get the length of string swith the function len(s)
● Letters in a string are indexed from 0
● To get the letter of string s at index x, use s[x] (square brackets!)

Lists

Examples of lists

● [1, -5, 3] a list of numbers
● [“dogs”, “cats”] a list of strings

● [] an empty list

● [4] a list with one number

Examples of lists

● [1, -5, 3] a list of numbers
● [“dogs”, “cats”] a list of strings

● [] an empty list

● [4] a list with one number

Lists use “square
brackets” []

Examples of lists

● [1, -5, 3] a list of numbers
● [“dogs”, “cats”] a list of strings

● [] an empty list

● [4] a list with one number

Fun fact: a string is a list of letters, and everything you can do with

strings you can also do with other lists

For example:

len([“dogs”, “cats”, “mice”]) is 3
[“dogs”] + [“cats] is [“dogs”, “cats”]

Lists use “square
brackets” []

Example function with lists

Write a function addToList(Lst, x) that
returns a new list consisting of Lst and x

For example addToList([“apples”, “juice”], “milk”)
becomes [“apples”, “juice”, “milk”]

Example function with lists

Write a function addToList(Lst, x) that
returns a new list consisting of Lst and x

For example addToList([“apples”, “juice”], “milk”)
becomes [“apples”, “juice”, “milk”]

List consisting of x
(just one element)

Try it out (and take turns!)

What have we learned about lists?

● You can put anything in a list
● They are much like strings

● We can glue two lists together with +

● We can get the number of elements in list Lst using len(Lst)
● Elements of a list are indexed from 0

● To get the element of string Lst at index x, use Lst[x]

Variables

How to keep a shopping list?

groceries is a “variable”
Variables remember values so you can use them later

How to keep a shopping list?

Python can recall the value of groceries

Example: adding “rice” to the shopping list

Does it work?

Example: adding “rice” to the shopping list

The value of groceries has not changed…
(because we didn’t tell Python to do that)

Example: adding “rice” to the shopping list

Here we tell Python to store a new value for groceries

Example: adding “rice” to the shopping list

Now “rice” is in groceries

Example: adding “rice” to the shopping list

Now practice adding some more items to groceries

What have we learned about variables?

● Each variable has a name

● You can store any value in a variable
● The notation for this in Python is x = value
● You can change the value of a variable the same way

Loops

Doing something with each element of a list

Write a function product(Lst) that returns the product of all
elements in a list of numbers

● How would you do this writing on a piece of paper?

Doing something with each element of a list

Write a function product(Lst) that returns the product of all
elements in a list of numbers

● How would you do this writing on a piece of paper?

1. Start with the first number

2. Multiply with the next number

3. Repeat until done with all numbers

This is called a “loop”

Loops in Python

Loops in Python

result is a
variable

Loops in Python

result is a
variable

elt is an
element in

Lst

Loops in Python

result is a
variable

elt is an
element in

Lst

result is updated
for each element

Loops in Python

result is a
variable

elt is an
element in

Lst

Here, result is 1 * 3 * 2 * 4
result is updated
for each element

Executing a loop

elt old result new result
3 1 ???

product([3, 2, 4])

elt

Executing a loop

elt old result new result
3 1 3

product([3, 2, 4])

elt

Executing a loop

elt old result new result
3 1 3
2 3 ???

product([3, 2, 4])

elt

Executing a loop

elt old result new result
3 1 3
2 3 6

product([3, 2, 4])

elt

Executing a loop

elt old result new result
3 1 3
2 3 6
4 6 ???

product([3, 2, 4])

elt

Executing a loop

elt old result new result
3 1 3
2 3 6
4 6 24

product([3, 2, 4])

elt

Executing a loop

elt old result new result
3 1 3
2 3 6
4 6 24

product([3, 2, 4])

The final result of the function

Write your own: below change product to sum
That is, add all the items in the list together

Example: write a function reverse(Lst)
that reverses the elements in a list

elt old result new result

reverse([“apples”, “juice”, “milk”])

“apples” [] ???

elt

elt old result new result

reverse([“apples”, “juice”, “milk”])

“apples” [] [“apples”]

elt

elt old result new result

reverse([“apples”, “juice”, “milk”])

“apples” [] [“apples”]

“juice” [“apples”] ???

elt

elt old result new result

reverse([“apples”, “juice”, “milk”])

“apples” [] [“apples”]

“juice” [“apples”] [“juice”, “apples”]

elt

elt old result new result

“milk” [“apples”, “juice”] ???

reverse([“apples”, “juice”, “milk”])

“apples” [] [“apples”]

“juice” [“apples”] [“juice”, “apples”]

elt

elt old result new result

“milk” [“apples”, “juice”] [“milk”, “juice”, “apples”]

reverse([“apples”, “juice”, “milk”])

“apples” [] [“apples”]

“juice” [“apples”] [“juice”, “apples”]

elt

More practice with loops
(remember: everybody gets a turn!)

Write a function double(Lst) that returns a list
consisting of all the numbers in Lst, but then doubled
● For example, double([3, 1, 4]) should return [6, 2, 8]

Working with ranges

Write a function squares(start, end) that returns a list of all the
squares of the numbers start (inclusive) through end (exclusive)

(in Computer Science, “inclusive” means that the value is
included, and “exclusive” means that the value is excluded)

For example, squares(1, 10) should return
[1, 4, 9, 16, 25, 36, 49, 64, 81]

Working with ranges range(start, end) generates
the integers from start (inclusive)

to end (exclusive)

Your turn to practice with ranges

Write function factorial(n) that returns n!
● n! is defined to be the product of all the integers from 1 to n
● For example, factorial(3) is equal to 1 * 2 * 3 (that is, 6)

What have we learned about loops?

● You can use a loop to visit every element in a list (or string)
● Alternatively, you can use a loop to visit over a range
● range(start, end) includes start but not end
● Generic format of a function with a loop:

IF STATEMENTS

What if you want to do something only sometimes?

Write function feeling(temp) that returns
“cold” if temp < 20 or “hot” otherwise

Correct indentation is important!

Using if statements in for loops

Write a function delete(Lst, item) that returns a list
consisting of the elements of Lst except for item

!= means “is not the same as”

Testing for equality

== is used to check if two values are the same

(do not confuse with =, which is used to assign a value to a variable!)

For example: if elt == x:
. . .

Correct indentation

Incorrect indentations: what do these do?

Incorrect indentations: what do these do?

This returns after
the first element
in Lst

This returns after
the first element
that is not item

Your turn to practice

Write a function count(Lst, item) that counts how many times
item occurs in Lst
● For example, count([“apples”, “juice”, “apples”],

“apples”) should return 2

What have we learned about if statements?

● You can use an if statement to execute code based on a condition
● An if statement may have an “else” part (but not required)

● You have to get indentation just so

● You can use != to test if two values are different or not
● By the way, != works on numbers, strings, and even lists!

Programs with multiple
functions

How to write difficult programs

Split program into multiple functions!

● Write a function shop(Lst, item) that returns the string

“we have item” if item is in Lst, or
“we need item” if not

For example: shop(groceries, “rice”) returns
“we have rice” if ”rice” is in groceries

How to write difficult programs
Split program into multiple functions!

● Write a function shop(Lst, item) that returns the string

“we have item” if item is in Lst, or “we need item” if not

Practice writing a difficult program

Write a function intersect(Lst1, Lst2) that returns the intersection of

lists Lst1 and Lst2 (a list of the elements that are in both lists).
● You can again use the count(list, item) function to simplify the task

Just a little math
before we go on

Two types of numbers

● “integers”

○ Examples: 0, 1, 2, 3, -3, 93723881

● ”floating point numbers”

○ Examples: 3.14159, -0.05, 123.45

Division with integers and floating point numbers

● What is 9 divided by 4?

○ Using integers, it is 2 with a remainder of 1

○ Using floating point numbers, it is 2.25

Same thing in Python

Floating point division

Integer division

Integer remainder (modulo)
You say “9 modulo 4”

Approaching Coding
Questions

A 3-Step Approach To Coding Problems

1. Read the question carefully. Understand what information you
have available to you and what the question wants you to do.

2. Try to write out an algorithm or solution to the problem in

“English” or “pseudocode”.
3. Translate your English solution to code

Example

Q: Write a function oddOrEven(x) that returns

“even” if x is even and “odd” if not

Step 1: Read the question carefully

Q: Write a function oddOrEven(x) that returns “even” if
x is even and “odd” if not

After reading the question, we see that we have one integer

number as our only input.

Since our function only has one input, our function header will

look something like:

def oddOrEven(x):

Step 2: Design a solution in “English”

Q: Write a function oddOrEven(x) that returns “even” if x is
even and “odd” if not

- If the input parameter is divisible by 2, then we know it is even

- Otherwise, it must be odd

We also know that we can check if something is divisible with the
modulo operator, %

Step 3: translate English into code

If the input parameter is divisible by 2, then it is even

if num % 2 == 0:

return “even”

Otherwise, it must be odd

else:

return “odd”

Finally, test it out
Test carefully!

Time to practice

Write a function isPrime(n) that returns “yes” if n
is prime and “no” otherwise

In English: a number n is prime if it can only be
divided by 1 and itself

(1 is an exception: it is not considered prime)

So, try to divide n by all numbers between 2 and n-1
and make sure there is always a non-zero remainder

A primer on conversion

Strings and Numbers

● 3 + 4 == 7
● “three” + “four” == “threefour”
● What is ”three” + 4???

Strings and Numbers

● 3 + 4 == 7
● “three” + “four” == “threefour”
● What is ”three” + 4?

Converting integers to strings

● str(4) is the string “4”

Input/Output

Python functions can “print” (output) and read from
the keyboard or even files (input)

Write a function needToShop(Lst) that asks for
the name of an item and prints the item and how many

instances of the item are in Lst

Note: the item is not an input parameter to needToShop(Lst)

Function needToShop(Lst)

Function needToShop(Lst)

Read
input

Function needToShop(Lst)

Read
input

Write
output

Function needToShop(Lst)

Read
input

Write
output

Note integer to
string conversion

Function needToShop(Lst)

Read
input

Write
output

no return
statement

Function needToShop(Lst)

Read
input

Write
output

Call function here

Function needToShop(Lst)

Read
input

Write
output

Enter input here

Call function here

Give it a shot yourself (and take turns!)

Input/Output in a loop

How to ask for input over and over again?

Input/Output in a loop

How to ask for input over and over again?

Long
loop

Input/Output in a loop

How to ask for input over and over again?

Long
loop

Add a
way to
stop

Input/Output in a loop

How to ask for input over and over again?

Long
loop

Add a
way to
stop

Return
with no
value

Try it out

Write your own function

Write a function that, in a loop, reads a string and prints the length of the string and the

total length of all the strings that were input. Stop if the input is the empty string (“”).

Recall that len(str) returns the length of string str

What have we learned about input/output

● You can print values using the print(value) statement

● You can input values using the input(prompt) statement (where
prompt is a string that is printed to ask the user for input)

